A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyographic Activity in the Back Squat and Barbell Hip Thrust Exercises

Bret Contreras,1 Andrew D. Vigotsky,2 Brad J. Schoenfeld,3 Chris Beardsley,4 and John Cronin1,5

1Auckland University of Technology; 2Arizona State University; 3CUNY Lehman College; 4Strength and Conditioning Research Limited; 5Edith Cowan University

The back squat and barbell hip thrust are both popular exercises used to target the lower body musculature; however, these exercises have yet to be compared. Therefore, the purpose of this study was to compare the surface electromyographic (EMG) activity of the upper and lower gluteus maximus, biceps femoris, and vastus lateralis between the back squat and barbell hip thrust. Thirteen trained women (n = 13; age = 28.9 years; height = 164 cm; mass = 58.2 kg) performed estimated 10-repetition maximums (RM) in the back squat and barbell hip thrust. The barbell hip thrust elicited significantly greater mean (69.5% vs 29.4%) and peak (172% vs 84.9%) upper gluteus maximus, mean (86.8% vs 45.4%) and peak (216% vs 130%) lower gluteus maximus, and mean (40.8% vs 14.9%) and peak (86.9% vs 37.5%) biceps femoris EMG activity than the back squat. There were no significant differences in mean (99.5% vs 110%) or peak (216% vs 244%) vastus lateralis EMG activity. The barbell hip thrust activates the gluteus maximus and biceps femoris to a greater degree than the back squat when using estimated 10RM loads. Longitudinal training studies are needed to determine if this enhanced activation correlates with increased strength, hypertrophy, and performance.

Keywords: back squat, hip thrust, gluteus maximus, electromyography, gluteus maximus, EMG

The gluteus maximus is considered to be important for both sport performance and injury prevention due to its multiplanar contribution to high-speed locomotion and knee stabilization.1–4 Therefore, strength coaches commonly employ exercises to strengthen the gluteus maximus musculature of their athletes.5–9 Two frequently prescribed exercises for strengthening the gluteus maximus are the back squat and barbell hip thrust.

The knee extensors have been shown to be the largest contributors (49%) to vertical jump performance,10 while hip extensor and knee flexor muscles have been shown to increase the most in relative muscle force contribution as running speed progresses toward maximum.3,11 Therefore, the quadriceps and hamstrings also are of great importance for maximizing performance in sports that are reliant upon running prowess.

The back squat is perhaps one of the most studied and used closed kinetic chain exercises and is a staple in strength and conditioning programs aimed at strengthening both the lower body in general and the gluteus maximus in particular. Numerous studies have investigated gluteus maximus electromyography (EMG) activity in the back squat, as reported in a recent review.12 The researchers found that increasing stance width and hip rotation in the back squat led to increased gluteus maximus and adductor activity, that back squat depth past parallel does not significantly alter muscle activity assuming identical relative loading is used, that leg and trunk muscle activity increase with increasing load, and that the highest muscle activation occurs in the initial portion of the concentric phase of movement.

However, there is a paucity of data comparing gluteus maximus EMG activity in the back squat to other barbell exercises that target this muscle.12 The back squat is also commonly used in strength and conditioning programs for increasing sprint running ability. Its usage for this purpose is supported by a recent meta-analysis in which the back squat was shown to transfer positively to sprint running performance.13 However, large increases (~23% to 27%) in back squat 1 repetition maximum (RM) are necessary for significant changes in sprint times (~2% to 3%) in recreationally-trained athletes and collegiate football players.14,15 Given this relatively low transfer effect, it is of interest for sport science researchers to understand the best exercises, methods, and protocols for improving sprint running performance. Since the gluteus maximus and hamstrings are highly activated in sprinting,3,16–19 it would be reasonable to assume that exercises that activate the gluteus maximus and hamstrings to a greater degree than other exercises may be better suited for increasing the strength of those muscles and thus, sprinting speed.

The barbell hip thrust, first introduced in the literature by Contreras and colleagues,20 is another exercise aimed at strengthening the gluteal musculature. To date, no acute or longitudinal studies have investigated the barbell hip thrust or its effects on gluteus maximus EMG activity, strength, sprint running speed, or gluteal development, nor has it been compared with the back squat.

The purpose of this investigation was to compare lower body muscle activity between the back squat and barbell hip thrust. Since...
previous investigations have revealed that the gluteus maximus has at least 3 functional subdivisions proximally to distally, and the upper and lower portions of the gluteus maximus have been shown to activate uniquely during stair ambulation and prone hip extension at varying levels of hip abduction.\(^\text{21–23}\) Muscle activity was recorded for both the upper and lower gluteus maximus. Firstly, due to the findings of Worrell and colleagues\(^\text{24}\) showing that gluteus maximus EMG is greater during maximal voluntary isometric contractions (MVICs) in full hip extension compared with hip flexion, it was hypothesized that the barbell hip thrust would elicit greater upper and lower gluteus maximus EMG activity compared with the back squat in both dynamic and isometric conditions. Secondly, on the basis of previous studies showing that the back squat elicits high levels of quadriceps EMG activity but low levels of hamstrings EMG activity,\(^\text{25}\) it was hypothesized that the back squat would elicit greater vastus lateralis EMG activity and less biceps femoris EMG activity compared with the barbell hip thrust in both dynamic and isometric conditions.

Methods

Subjects

Thirteen healthy women (age = 28.9 ± 5.11 years; height = 164 ± 6.26 cm; body mass = 58.2 ± 6.37 kg) participated in this study. Subjects had 7.00 ± 5.80 years of resistance training experience and had a 10RM of 53.2 ± 17.0 kg and 87.4 ± 19.3 kg on the back squat and barbell hip thrust, respectively. Inclusion criteria required subjects to be between 20 to 40 years of age, have at least 3 years of consistent resistance training experience, and be familiar with performance of both the back squat and barbell hip thrust exercises. All subjects were healthy and free of any musculoskeletal or neuromuscular injuries, pain, or illnesses. Subjects filled out an informed consent form and Physical Activity Readiness Questionnaire (PAR-Q). Any subject that answered “Yes” to any of the questions on the PAR-Q was excluded. Subjects were advised to refrain from training their lower body for 72 hours before testing. To ensure acceptable performance in the back squat and barbell hip thrust, subjects performed each movement using only a barbell, while the lead researcher evaluated technique. If a subject reported pain, discomfort, or failed to perform the movement correctly, she was excluded from participation. If, for any reason, a subject could not complete a trial, her data were discarded. The study was approved by the Auckland University of Technology Ethics Committee.

Procedures

Subjects first performed a 10-minute general warm-up consisting of various dynamic stretches for the lower body musculature. Afterward, 3 progressively heavier specific warm-up sets were performed for both the back squat and barbell hip thrust exercises. Next, each subject performed as many repetitions as she could with a moderately heavy load that could not be performed for more than 10 repetitions. Subjects’ 1RM were then estimated by utilizing Table 15.7 on page 394 from Baechle and Earle.\(^\text{26}\) Finally, subjects’ 10RM were estimated using the aforementioned table, which corresponded to 75% of the subjects’ 1RM. This estimation approach is similar to that used by Vigotsky and colleagues.\(^\text{27}\) Order of the testing was randomized.

Subjects were asked to wear appropriate clothing for access to the EMG electrode placement sites. Before placing the electrodes on the skin, excess hair was removed with a razor, and skin was cleaned and abraded using an alcohol swab. After preparation, self-adhesive disposable silver/silver chloride pregelled dual-snap surface bipolar electrodes (Noraxon Product #272, Noraxon USA Inc., Scottsdale, AZ) with a diameter of 1 cm and an interelectrode distance of 2 cm were attached in parallel to the fibers of the right upper gluteus maximus, lower gluteus maximus, biceps femoris, and vastus lateralis, in concordance with the recommendations of Lyons and colleagues,\(^\text{22}\) Hermens and colleagues,\(^\text{28}\) and Fujisawa and colleagues.\(^\text{23}\) In particular, the upper gluteus maximus electrodes were placed superior and lateral to a line drawn between the posterior superior iliac spine (PSIS) and the posterior greater trochanter, and the lower gluteus maximus electrodes were placed inferior and medial to a line drawn between the PSIS and the posterior greater trochanter. After the electrodes were secured, a quality check was performed to ensure EMG signal validity.

Ten minutes after 10RM testing, MVIC testing was performed. For the gluteus maximus, 2 MVIC positions were tested. The first involved a prone bent-leg hip extension against manual resistance applied to the distal thigh, as used by Boren and colleagues.\(^\text{29}\) The second involved a standing glute squeeze. Pilot data from our laboratory revealed that a minority of subjects achieved higher levels of gluteus maximus EMG activity with the standing glute squeeze than during the prone bent-leg hip extension against manual resistance; thus, both conditions were recorded and EMG was normalized to whichever contraction elicited greater EMG activity. Biceps femoris MVIC was determined by having the subject lay prone and produce maximum knee flexion torque at 45° knee flexion against manual resistance applied to the distal leg just above the ankle, as reported by Mohamed and colleagues.\(^\text{30}\) Two vastus lateralis MVIC positions were used. The first had the subject sit and produce maximum knee extension torque against manual resistance applied to the distal leg just above the ankle at 90° hip flexion and 90° knee flexion, as detailed by Kong and Van Haselen,\(^\text{31}\) while the second used a 90° hip flexion and 180° knee position. Whichever contraction elicited greater EMG activity was used for normalization. In all MVIC positions, subjects were instructed to contract the tested muscle “as hard as possible.”

After 10 minutes of rest following MVIC testing, subjects performed 10 repetitions utilizing their estimated 10RM of the back squat and the barbell hip thrust in a randomized order and counterbalanced fashion. During the back squat, subjects’ feet were slightly wider than shoulder-width apart, with toes pointed forward or slightly outward. Subjects descended until the tops of the thigh were parallel with the floor (Figure 1).\(^\text{32}\) In accordance with Contreas and colleagues,\(^\text{20}\) the barbell hip thrust was performed by having subjects’ upper backs on a bench, approximately 16 inches high. Subjects’ feet were slightly wider than shoulder-width apart, with toes pointed forward or slightly outward. The barbell was padded with a thick bar pad and placed over the subjects’ hips. The subjects were instructed to thrust the bar upwards while maintaining a neutral spine and pelvis (Figure 2). Subjects were given 5 minutes of rest between sets. No predetermined tempo was set as to better mimic typical training conditions.

Following 10 minutes of rest, subjects then performed 3-second isoholds for the back squat and barbell hip thrust exercises using the same estimated 10RM loads as they did during the dynamic tests. Order was randomized in a counterbalanced fashion and depth was set at parallel (in hip flexion) for the back squat and at lockout (at full hip extension) for the barbell hip thrust. Subjects were given 5 minutes of rest between sets.

Raw EMG signals were collected at 2000 Hz by a MyoTrace 400 EMG unit (Noraxon USA Inc, Scottsdale, AZ). Data were sent...
in real time to a computer via Bluetooth and recorded and analyzed by MyoResearch 3.6 Clinical Applications software (Noraxon USA, Inc., Scottsdale, AZ). Signals of all 10 repetitions for the dynamic sets and for all 3 seconds of the isoholds were first filtered using a 10 to 500 Hz bandpass filter, followed by full-wave rectification and smoothing using root mean square (RMS) with a 100-millisecond window. Finally, mean and peak data were normalized to a mean peak of a 1000-millisecond window from the MVIC trials.

Statistical Analysis

Paired samples \(t \) tests were performed using SPSS (Version 22.0, IBM Corp., Armonk, NY, USA). Alpha was set to .05 for significance, and a Holm-Bonferroni correction was used to correct for multiple pairwise comparisons for each muscle tested. Adjusted \(p \)-values were reported. Effect sizes (ES) were calculated by Cohen’s \(d \) using the formula \(M_1 - M_2/SD \), where means (\(M \)) from each group (back squat and barbell hip thrust) were subtracted and divided by the pooled standard deviation (SD). ES were defined as small, medium, and large at 0.20, 0.50, and 0.80, respectively. Confidence intervals (95% CI) for each ES were also calculated.

Results

The barbell hip thrust elicited significantly greater EMG activity than the back squat for mean (ES = 1.55; 95% CI = 0.63–2.37; \(P = .004 \)) and peak (ES = 1.22; 95% CI = 0.35–2.02; \(P = .004 \)) of the upper gluteus maximus, mean (ES = 1.64; 95% CI = 0.70–2.47; \(P = .004 \)) and peak (ES = 1.18; 95% CI = 0.31–1.97; \(P = .038 \)) of the lower gluteus maximus, and mean (ES = 1.58; 95% CI = 0.66–2.41; \(P = .004 \)) and peak (ES = 1.63; 95% CI = 0.69–2.45; \(P = .004 \)) of the biceps femoris. There were no significant differences in mean (ES = –0.15; 95% CI = –0.91 to 0.63; \(P = .531 \)) and peak (ES = –0.17; 95% CI = –0.94 to 0.60; \(P = .400 \)) vastus lateralis EMG activity between the back squat and barbell hip thrust exercises (Table 1).

The barbell hip thrust isohold elicited significantly greater EMG activity than the back squat isohold for mean (ES = 1.36; 95% CI = 0.47–2.17; \(P = .004 \)) and peak (ES = 1.37; 95% CI = 0.47–2.17; \(P = .004 \)) of the upper gluteus maximus, mean (ES = 2.61; 95% CI = 1.50–3.56; \(P < .001 \)) and peak (ES = 2.44; 95% CI = 1.36–3.36; \(P < .001 \)) of the lower gluteus maximus, and mean (ES = 1.66; 95% CI = 0.72–2.49; \(P = .001 \)) and peak (ES = 1.63; 95% CI = 0.70–2.46; \(P = .001 \)) of the biceps femoris. There were no significant differences in mean (ES = –0.25; 95% CI = –1.01 to 0.53; \(P = .230 \)) and peak (ES = –0.18; 95% CI = –0.94 to 0.60; \(P = .389 \)) vastus lateralis EMG activity between the back squat and barbell hip thrust isoholds (Table 1).

Discussion

Results partially confirm the research hypotheses in that the barbell hip thrust elicited significantly greater gluteus maximus (upper mean ES: 1.55; upper peak ES: 1.22; lower mean ES: 1.64; lower peak ES: 1.18) and biceps femoris (mean ES: 1.58; peak ES: 1.63) EMG activity than the back squat. However, the back squat failed to elicit significantly greater vastus lateralis (mean ES: –0.15; peak ES: –0.17) EMG activity than the barbell hip thrust.

It was not surprising that the barbell hip thrust elicited significantly greater gluteus maximus EMG activity than the back squat, both when assessed dynamically and during isoholds. Worrell and colleagues described the EMG hip–angle relationship of the gluteus maximus during MVICs. Their data showed that when
creating maximal isometric hip extension torque in an isokinetic dynamometer at 90°, 60°, 30°, and 0° hip angles, gluteus maximus EMG activity is lowest with the hip in 90° of hip flexion and highest with the hip in 0° of hip extension (neutral). Furthermore, because the knee is flexed during the barbell hip thrust, it is presumed that the hamstrings are under active insufficiency, thus requiring greater muscular effort from the gluteus maximus to generate sufficient hip extension torque. Since muscular effort appears to be greatest during the barbell hip thrust when the hips are in full extension, allowing for exceptionally high knee extension torque requirements during the back squat exercise, Caterisano and colleagues did not use relative loading, which may explain why greater EMG activity was observed in the full-depth squat than the parallel and partial squats. Data for the back squat isohold was in line with Schaub and Worrell; however, there were 2 key differences between their study and the current study. First, the squat depth used by Schaub and Worrell was shallower, and second, participants performed an overcoming isohold which involved maximally pushing against an immovable crossbar, whereas the present study used a yielding isohold where subjects held a 10RM load in place.

Similarly, it was not surprising that the barbell hip thrust (dynamic = 40.8%; isometric = 42.5%) elicited significantly greater biceps femoris EMG activity than the back squat (dynamic = 14.9%; isometric = 7.38%), both when assessed dynamically and during isoholds. Numerous studies have found that the back squat routinely displays low levels of hamstrings EMG activity, especially in comparison with measurements taken from the quadriceps. Although, some of these studies did not normalize EMG measurements, which makes direct comparison between muscles difficult. Exactly why the back squat leads to low levels of EMG activity in the hamstrings is not entirely clear. The position of the barbell load relative to the hip and knee joints along with individual anthropometry might impact hip and knee extensor activity. At the thigh-parallel position, assuming similar shin angles, individuals with relatively long femurs and short torsos will necessarily exhibit greater forward trunk lean to keep the barbell centered over the feet. This increased trunk lean has been shown to increase hip extension torque and decrease knee extension torque requirements during the back squat exercise, which might increase hip extensor and decrease knee extensor EMG activity in full-depth squats than in parallel and partial squats. However, Caterisano and colleagues did not use relative loading, which may explain why greater EMG activity was observed in the full-depth squat than the parallel and partial squats.

Table 1 Mean (± SD) and peak EMG amplitudes (% MVIC) of the upper gluteus maximus, lower gluteus maximus, biceps femoris, and vastus lateralis during the barbell hip thrust and back squat

<table>
<thead>
<tr>
<th></th>
<th>Upper Gluteus Maximus</th>
<th>Lower Gluteus Maximus</th>
<th>Biceps Femoris</th>
<th>Vastus Lateralis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back squat</td>
<td>29.35 ± 16.45</td>
<td>45.29 ± 23.54</td>
<td>14.92 ± 6.64</td>
<td>110.35 ± 47.24</td>
</tr>
<tr>
<td>Barbell hip thrust</td>
<td>69.46 ± 32.64*</td>
<td>86.75 ± 26.99*</td>
<td>40.78 ± 22.13*</td>
<td>99.47 ± 92.28</td>
</tr>
<tr>
<td>Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back squat</td>
<td>84.85 ± 42.91</td>
<td>129.60 ± 60.45</td>
<td>37.50 ± 18.39</td>
<td>243.92 ± 121.63</td>
</tr>
<tr>
<td>Barbell hip thrust</td>
<td>171.75 ± 90.99*</td>
<td>215.85 ± 83.76*</td>
<td>86.87 ± 38.81*</td>
<td>215.83 ± 193.89</td>
</tr>
<tr>
<td>Isometric mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back squat</td>
<td>10.11 ± 7.96</td>
<td>20.85 ± 19.95</td>
<td>7.38 ± 4.28</td>
<td>133.72 ± 107.59</td>
</tr>
<tr>
<td>Barbell hip thrust</td>
<td>87.08 ± 79.43*</td>
<td>115.72 ± 47.40*</td>
<td>42.5 ± 29.61*</td>
<td>110.66 ± 78.27</td>
</tr>
<tr>
<td>Isometric peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back squat</td>
<td>17.87 ± 16.96</td>
<td>34.30 ± 32.77</td>
<td>13.73 ± 9.99</td>
<td>201.28 ± 162.69</td>
</tr>
<tr>
<td>Barbell hip thrust</td>
<td>128.22 ± 112.92*</td>
<td>180.45 ± 78.16*</td>
<td>67.67 ± 45.77*</td>
<td>175.82 ± 124.34</td>
</tr>
</tbody>
</table>

Abbreviations: EMG = electromyographic; MVIC = maximal voluntary isometric contraction.

* Denotes a statistically significant difference from the back squat. Statistically significantly greater EMG activity was observed in the barbell hip thrust for mean, peak, isometric mean, and isometric peak upper gluteus maximus, lower gluteus maximus, and biceps femoris when compared with the back squat.
activity. Alternatively, it may relate to the biarticular nature of the hamstrings musculature. While the squat involves hip extension, for which the hamstrings are a prime mover, it also involves knee extension, for which the hamstrings are an antagonist. Yamashita45 compared hamstrings EMG activity during isolated hip extension and isolated knee extension movements performed with 20% of the MVIC moment to hamstrings EMG activity with a combined hip and knee extension movement using the same hip and knee extension moments. Hamstrings EMG activity in combined hip and knee extension only reached 42% of the level in the isolated hip extension movement, despite the hip extension moment being identical in each case. It was concluded that hamstrings EMG activity was depressed when combined hip and knee extension are performed compared with during isolated hip extension. This may occur because the hamstrings changed length to a greater extent when performing isolated hip extension compared with when performing combined hip and knee extension. Kwon and Lee46 noted that the maximum hip extension torque and hamstrings EMG decrease at knee flexion angles greater than 60°, indicating that hamstring activity is markedly reduced when the knee is significantly bent.

In contrast, the failure of the back squat to display greater vastus lateralis EMG activity in comparison with the barbell hip thrust was unexpected. The back squat is well known to elicit high levels of quadriceps EMG activity in comparison with other lower body exercises, including the leg press and leg extension47 and the Smith machine squat.48 Thus, the failure of our trial to discern any differences in vastus lateralis EMG activity during isolated hip extension and isolated knee extension movements using the same hip and knee extension moments is surprising. Hamstrings EMG activity in combined hip and knee extension only reached 42% of the level in the isolated hip extension movement, despite the hip extension moment being identical in each case. It was concluded that hamstrings EMG activity was depressed when combined hip and knee extension are performed compared with during isolated hip extension. This may occur because the hamstrings changed length to a greater extent when performing isolated hip extension compared with when performing combined hip and knee extension. Kwon and Lee46 noted that the maximum hip extension torque and hamstrings EMG decrease at knee flexion angles greater than 60°, indicating that hamstring activity is markedly reduced when the knee is significantly bent.

Table 2 EMG findings of previous research on the back squat for the gluteus maximus, biceps femoris, and vastus lateralis muscles compared with current findings

<table>
<thead>
<tr>
<th>Load</th>
<th>Gluteus Maximus</th>
<th>Biceps Femoris EMG</th>
<th>Vastus Lateralis EMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gullett et al46</td>
<td>70% of 1RM (n/a)</td>
<td>~20% mean</td>
<td>~65% mean</td>
</tr>
<tr>
<td>Wilk et al57</td>
<td>12RM (n/a)</td>
<td>36% mean</td>
<td>54% peak</td>
</tr>
<tr>
<td>Escamilla et al57</td>
<td>12RM (n/a)</td>
<td>~90% peak</td>
<td>~80% peak</td>
</tr>
<tr>
<td>Manabe et al58</td>
<td>30% of 1RM (~80% peak)</td>
<td>~40% peak</td>
<td>~60% peak</td>
</tr>
<tr>
<td>Escamilla et al52</td>
<td>12RM (n/a)</td>
<td>41% peak</td>
<td>57% peak</td>
</tr>
<tr>
<td>Aspe & Swinton55,*</td>
<td>75% of 1RM (~55% mean)</td>
<td>~50% mean</td>
<td>~76% mean</td>
</tr>
<tr>
<td>Ebben et al25</td>
<td>6RM (n/a)</td>
<td>32% mean</td>
<td>91% mean</td>
</tr>
<tr>
<td>Contreras et al (current study)</td>
<td>10RM (45% mean)</td>
<td>15% mean</td>
<td>110% mean</td>
</tr>
<tr>
<td></td>
<td>& 130% peak**</td>
<td>38% peak</td>
<td>244% peak</td>
</tr>
</tbody>
</table>

Abbreviations: EMG = electromyographic; RM = repetition maximum.

* Used integrated EMG; average of the eccentric and concentric phases is presented.

** Represents lower gluteus maximus data, as it was assumed that it might better represented how the middle gluteus maximus fibers would activate when compared with the upper gluteus maximus fibers.
of the muscle activation during the back squat exercise, the reader is directed to a recent review article by Clark and colleagues. When considering the aforementioned variables, the findings of this study are in line with previous research (Table 2).

Limitations of this study should be considered in the interpretation of its findings. Firstly, surface EMG is sensitive to things like neighboring crosstalk, sliding of the skin over the muscle belly, and changes in muscle belly geometry. An estimated 10RM was used, which may differ from subjects’ actual 10RM and may be the case, as the methods described by Baechle and Earle26 have not been validated in the hip thrust or back squat. Moreover, if the subjects could have performed extra repetitions during testing above their estimated 10RM, we did not have them do so. Therefore, exercise testing was not carried out to momentary muscular failure for each exercise. Finally, relatively light loads were used in this study. Fairly testing was not carried out to momentary muscular failure for each exercise. Therefore, the results of this study only apply to loads of approximately 75% of 1RM, or ~10RM.

The back squat has long been a staple in strength training programs and is one of the most well researched exercises in the literature. The barbell hip thrust is a newer exercise that lacks longitudinal research. Fitness professionals can confidently incorporate barbell hip thrusts into their programs with the knowledge that they will lead to hypertrophy and performance improvements. The findings of this study indicate that fitness professionals can also justify the inclusion of barbell hip thrusts into their programming for developing the hip extensor musculature due to the superior mean and peak gluteus maximus and biceps femoris activity compared with the back squat. In cases where back squats cannot safely be performed, perhaps due to injury, pain, mobility deficits, or hip dysfunction, the greater stability of the barbell hip thrust would seem to make it an excellent alternative for developing the lower body musculature. In addition, evidence suggests that individuals seeking to maximize their gluteus maximus development should incorporate barbell hip thrusts into their regimen.

Acknowledgments

The lead author would like to disclose that he is the patentee and inventor of The Hip Thruster (US Patent Number US8172736B2), which is an apparatus designed to allow for comfortable performance of the hip thrust variations.

References

